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1 Sheaves and Presheaves

For the following, let X be a topological Space.

Definition 1. A presheaf (of sets) F on X is a structure consisting of sets
of sections F (U) associated to each open subset U ⊂ X and restriction maps
between the respective sets of sections for all open U, V ⊂ X with V ⊂ U , such
that:

(P1) For all open U ⊂ X, F (U) is a set,

(P2) For all V ⊂ U ⊂ X, V,U open, the restriction map ρUV : F (U) → F (V ),
satisfies

(a) ρUU = idU for all open U ⊂ X

(b) ρUW = ρVW ◦ ρWV for all open W ⊂ V ⊂ U

Building on this definition, the presheaf of an abelian group can be defined
as follows:

Definition 2. A presheaf (of abelian groups) is a presheaf F of sets such that

(P1’) For all open U ⊂ X, F (U) has abelian group structure,

(P2’) Every restriction map is a group homomorphism.
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In a similar fashion, presheaves can be defined vor various different struc-
tures by requiring the sections to have the respective structure and the restric-
tion maps to be morphisms in respect to the structure. With the existence of
restriction maps, a presheaf guarantees the sections will behave nicely under
restriction of the associated sets. A question that one might ask now is what
happens on a larger scale. Can local sections that coincide on intersections be
extended to a global section in a meaningful way? Are two everywhere locally
equal sections also globally equal? The answer to both of these questions is no
in general; if those two properties hold, however, the presheaf can be used in
much broader contexts, leading to the following definition of a sheaf.

Definition 3. A Sheaf (of sets) is a presheaf F (of sets) that satisfies

(M) the Monopresheaf condition: For any U ⊂ X open, let U =
⋃

i∈I Ui be an
open covering of U . Further, let s, s′ ∈ F (U) such that ρUUi

(s) = ρUUi
(s′)

for all i ∈ I. Then, s′ = s.

(G) the Glueing condition: For any U ⊂ X open, let U =
⋃

i∈I Ui be an
open covering of U . Now, let (si)i∈I with si ∈ F (Ui) ∀i ∈ I such that

∀i, j ∈ I : ρUi

Ui∩Uj
(si) = ρ

Uj

Ui∩Uj
(sj).. Then there exists s ∈ F (U), such

that rhoUUi
(s) = si ∀i ∈ I.

In words, the monopresheaf condition guarantees that two sections that are
equal locally are already equal on the whole set; the glueing condition gives the
opportunity to

”
glue“ together local sections to a global section, permitting to

extend sections onto a bigger domain under certain circumstances. Between the
presheaf conditions and the sheaf conditions, getting

”
bigger“ is regulated as

well as getting
”
smaller“ . As for presheaves, sheaves can be defined accordingly

for various different structures.

2 Examples, Part One

Now, it’s time to see some basic examples of presheaves and sheaves. For each
example, we will shortly check which of the conditions as defined above holds.

Example 1. For a given set A, the constant presheaf AX is defined by{
AX(U) := A for U ⊂ X open

ρUV := idA ∀V ⊂ U ⊂ X open

One immediatley sees that the constant presheaf indeed satisfies the presheaf
conditions (P1) and (P2), as the name implies. Additionally, it satisfies the
monopresheaf condition: As the restriction map is always the identity on A, so
for any open U with open covering and s, s′ ∈ F (U), ρUUi

(s) = ρUUi
(s′) directly

implies s = s′.
The constant presheaf is in general not a sheaf, however, as it doesn’t satisfy

the glueing condition.

Example 2. Define the presheaf Fconst of constant functions by{
Fconst(U) := {f : U → R constant} for U ⊂ X open

ρUV := f |V ∀V ⊂ U ⊂ X open
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The presheaf of constant functions is quite similar to the constant presheaf.
Once again, it is easy to see that (P1) and (P2) hold. (M) follows from the
fact that all the considered functions are constantz. Once again, the glueing
condition fails, and here it’s easy to see why: Consider two open, disjoint sets
U1, U2 ⊂ X and two sections f1 ∈ Fconst(U1), f2 ∈ Fconst(U2) taking on different
values. U1 and U2 clearly form an open covering of an open set U = U1 ∪ U2 ⊂
X, however, their intersection is empty. As such, the sections coincide when
restricted to U1 ∩ U2: f1|∅ = f2|∅. As f1 and f2 take on different values, there
is no constant function on U1 ∪U2 that restricts to both at the same time, and
thus, no section that satisfies the glueing condition.

Note that this is different if instead of constant functions we choose locally
constant functions, i.e. functions that are constant on each connected compo-
nent. Indeed, the locally constant presheaf is a sheaf! This is because it is the

”
Sheafification“ of the sheaf of constant functions, which will be covered in a
later talk.

Next up are more function sheaves that find common use:

Example 3. The sheaf of r-times differentiable functions is given by{
Cr(U) := {f : U → R|f is r-times continuously differentiable} for U ⊂ X open

ρUV . = f |V ∀V ⊂ U ⊂ X open

Similarly, the sheaves C∞ and Cω can be defined, with Cω(U) denoting holo-
morphic functions on U.

Again, (P1) and (P2) are easy to verify, as well as (M), considering the
functions are differentiable. The glueing condition can be checked by using the
fact that r-times continuously differentiable functions have this property on a
small neighborhood of each point.

It is to note here that the sheaves C∞ and Cω behave quite differently. Also,
one can see where ρ got the name

”
restriction map“ . To see where the name

of the sections comes from, let’s consider the last example, the sheaf of sections.

Example 4. Let E be a topological space, p : E → X continuous. The sheaf of
sections ist defined by{

F (U) := {σ : U → E cont.|p ◦ σ = idU} for U ⊂ X open

ρUV : F (U) → F (V ), σ 7→ σ|v ∀V ⊂ U ⊂ X open

Here, (P1) and (P2) are easy to see. (M) is a consequence of the fact that
p◦σ = idU , σ has to be an injection and therefore the image of a point is unique.
(G) follows by the fact that an open covering is considered, so the function is
smooth on the glueing edges.

THe sections in this example are literally sections as known from topology.

3 Direct Limits, Stalks and Germs

After considering some examples, we now want to lay the basis for later con-
structions considering sheaves and introduce the terminology of germ and stalk.
For this, however, we first have to define what directed systems and their direct
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limits are. Basically, the idea of a directed system is to order structures (in our
case sets) in order of them getting

”
smaller“ with the direct limit being the

”
smallest“ such element of a directed system.

Definition 4. A directed set Λ is a set with a preorder ≤ that also satisfies: for
all α, β ∈ Λ there exists γ ∈ Λ such that α ≤ γ and β ≤ γ. A directed system
(of Sets) is a family of sets (Uα)α∈Λ together with a map ραβ : Uα → Uβ for
each pair α, β ∈ Λ with α ≤ β that satisfies the following conditions:

(a) ραα = idUα
∀α ∈ Λ

(b) ραγ = ρβγ ◦ ραβ ∀α.β, γ ∈ Λ with α ≤ β ≤ γ.

The similarity of the ρ in the directed system and te restriction maps of
presheaves is striking and, in the end, is exactly what we will use for our causes.

Definition 5. A target of a directed system (of sets)(Uα)α∈Λ is a set V and a
collection of maps σα : Uα → V such that for all α, β ∈ Λ, α ≤ β the σα, σbeta

are compatible with the ραβ in the sense that σalpha = σbeta ◦ ραβ. A direct
limit for the system is a target U with maps τα : Uα → U that satisfies the
following universal property: for any target V as above, there exists a unique
map f : U → V such that σα = f ◦ τα ∀α ∈ Λ.

Every directed system has a direct limit, and two direct limits of the same
directed system are naturally isomorphic, so it makes sense to think of

”
the“ di-

rect limit of a directed system. As this is not the main emphasis of the talk,
please refer to Chapter 1.3 of [Tennison].

As before, these definitions can similarly be formulated for other structures
by requiring the elements of the directed system having the respective structures
and the maps ραβ to be morphisms of this structure.

With the concept of direct limits, we can now talk about stalks and germs by
considering a system of progressively smaller subsets of X containing a specific
Element. Note that te following definition s formulated for presheaves; in fact
stalks are one key component for the sheafification of a presheaf.

Definition 6. Let F be a presheaf. For fixed x ∈ X consider a directed system
of F (U) with x ∈ U , using the restriction maps of F . The stalk Fx of F at x
then is the direct limit lim−−→

U∋x
with maps F (U) → Fx, s 7→ sx for x ∈ U , U

open. The members of a stalk are called Germs of sections.

Conceptually, the stalks and germs are the extension from presheaves over
sets U ⊂ X to include points in X and the smallest object associated with the
presheaf and compatible with the restriction maps. They will in later talks find
use as a tool to handle sheaves where sections are

”
too big“ .

4 Examples, Part Two

Finally, let’s take a look at two examples of stalks, the first one being the stalks
of a constant presheaf as seen in 1. It follows directly from the definition of that
presheaf.

Example 5. The stalk of a constant presheaf of a set A as seen in Example 1
is given by

AX,x = A ∀x ∈ X.
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The second example are stalks of the presheaf Fconst at x. It consists of
equivalence classes of constant functions on a small neighbourhood of x with
two functions being equivalent if they coincide restricted to a neighbourhood of
x.

Example 6. The stalk of the presheaf of constant functions is given by

{f : Ux → R| f constant}/∼

with f ∼ g iff f |Vx
= g|Vx

for a small Vx ⊂ Ux.

Note that this is also the stalk of the sheaf of locally constant functions –
stalks cannot be uniquely identified with sheaves! With this, the groundwork
for the upcoming talks is done.

5 Sources

[Tennison] B. R. Tennison, Sheaf Theory. London Mathematical Society Lecture
Notes Series, No. 20. Cambridge University Press, Cambridge, Endgland-
New York-Melbourne, 1975

6 Remarks

This section contains a remark I made in the talk concerning the naming of
sheaves. A sheaf (Garbe) is originally a bundle of wheat. If one imagines such a
bundle (see below), the notion of sections (Schnitte) and stalks (Halme) seems
obvious. Note, however, that the notion of (mathematical) germs does not
intuitively correspond to the germs of wheat: The (mathematical) germs of a
sheaf can sit at any point on the stalk and give rise to sections of the sheaf,
rather than the stalks!
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